内容标题6

  • <tr id='knKP1v'><strong id='knKP1v'></strong><small id='knKP1v'></small><button id='knKP1v'></button><li id='knKP1v'><noscript id='knKP1v'><big id='knKP1v'></big><dt id='knKP1v'></dt></noscript></li></tr><ol id='knKP1v'><option id='knKP1v'><table id='knKP1v'><blockquote id='knKP1v'><tbody id='knKP1v'></tbody></blockquote></table></option></ol><u id='knKP1v'></u><kbd id='knKP1v'><kbd id='knKP1v'></kbd></kbd>

    <code id='knKP1v'><strong id='knKP1v'></strong></code>

    <fieldset id='knKP1v'></fieldset>
          <span id='knKP1v'></span>

              <ins id='knKP1v'></ins>
              <acronym id='knKP1v'><em id='knKP1v'></em><td id='knKP1v'><div id='knKP1v'></div></td></acronym><address id='knKP1v'><big id='knKP1v'><big id='knKP1v'></big><legend id='knKP1v'></legend></big></address>

              <i id='knKP1v'><div id='knKP1v'><ins id='knKP1v'></ins></div></i>
              <i id='knKP1v'></i>
            1. <dl id='knKP1v'></dl>
              1. <blockquote id='knKP1v'><q id='knKP1v'><noscript id='knKP1v'></noscript><dt id='knKP1v'></dt></q></blockquote><noframes id='knKP1v'><i id='knKP1v'></i>

                信息科學技術學院建院20周年系列:數學系學術講座(十一)

                發布單位:成果專利綜嗤合科 [2021-06-03 16:35:31] 打印此信息

                  目:Isoparametric Submanifolds and Mean Curvature Flow

                內容簡介:Ancient solutions are important in studying singularities of mean curvature flows (MCF). So far most rigidity results about ancient solutions are modeled on shrinking spheres or spherical caps. In this talk, I will describe the behavior of MCF for a class of submanifolds, called isoparametricsubmanifolds, which have more complicated topological type. We can show that all such solutions are in fact ancient solutions, i.e. they exist for all time which goes to negative infinity. Similar results also hold for MCF of regular leaves of polar foliations in simply connected symmetric spaces with non-negative curvature. I will also describe our conjectures proposed together with Terng on rigidity of ancient solutions to MCF for hypersurfaces in spheres. These conjectures are closely related to Chern’s conjecture for minimal hypersurfaces in spheres. This talk is based on joint works with Chuu-LianTerng and Marco Radeschi.

                報告人:北京大學  劉小博  教授

                報告人簡介:本科畢業於清華大學,博士畢業於美國賓夕法尼亞大學,曾精華所凝結任美國聖母大學教授,現為北京大學〖講席教授。他曾在《Annals of Math.》、《Journal of Differential Geometry》、《Duke Math. Journal》等國際一流期刊上發表多篇論文。由於在幾何與數學物∑ 理領域傑出的學術成就,他曾獲得美國看來陽正天被你騙 Sloan 研究獎,並應邀在 2006 年的國際數學家大會上做 45 分鐘報告。目前,他正擔任北京國際數學中心的副主任。

                  間:2021611日(周五)上午1030開始

                  點:騰訊在線會議ID908 965 709

                點擊鏈接入會,或¤添加至會議列表:

                https://meeting.tencent.com/s/0jMv3gUbdev6

                 

                 

                熱烈歡迎廣大師生■參加!

                 

                 

                信息科學技術學院

                202162